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Preface 

 

The purpose of this text book is to recast the theories pertaining to the time dependent 

quantum mechanics in a more consolidated but easily perceptible form. (to be completed) 
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Chapter 2: Time-Dependent Schrödinger Equation 

Highlights: Time-dependent Schrodinger Equation, Variable Separation, Stationary and Superposition 

States, Electronic and Vibrational Superposition States, Optical Pulse and Particle Wavepacket 

 

Quantum mechanics governs structure and dynamics of systems at the atomic and 

molecular level. In quantum mechanics, the wavefunction, denoted as ( ),x tψ  (let us choose 

one dimension for obtaining a simple picture), provides a complete description of the system at 

any given time and gives information about a system’s dynamical observables (the physical 

quantities which can be measured or observed, such as position, momentum, energy, etc.). The 

wavefunction of a quantum system evolves in time according to the time-dependent 

Schrödinger equation (TDSE which is a differential equation of first order in time postulated by 

Schrödinger for the wavefunction of a quantum particle).
1
 

 

Time-Dependent Schrödinger Equation: 

The TDSE for a (nonrelativistic) single particle (speed of the particle is assumed to be 

much less than speed of light) in one dimension is written as 

( ) ( )ˆ, ,i x t H x t
t
ψ ψ

∂
=

∂
�  ..... (1) 

where, 1i = − , �  is Planck’s constant divided by 2π  (which is equal to 

34 151.054572 10  J s 0.657947 10  eV s− −× = × ), and Ĥ  is the Hamiltonian operator: 

2 2

2
ˆ ( )

2
H V x

m x

  ∂
= − +  

∂  

�
 in which first and second terms are respectively kinetic energy and 

potential energy operators (more details of the quantum mechanical operators can be found in 

Chapter 3).  As evident here, Ĥ  is a function of x  only (it has no explicit dependence on time). 

The function, ( ),x tψ , which satisfies the above equation, is called the wavefunction.
2
 Nature of 

( ),x tψ  for a quantum particle is solely determined by the Hamiltonian associated with it (or in 

other words, the potential ( )V x  experienced by the particle; the size and extent of the 

“particle” of course is a function of the potential energy term ( )V x ). ( )
2

,x t dxψ  represents 

the probability of finding the particle between x  and ( )x dx+ . If ( ),x tψ  is normalized, then 
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one can write ( )
2

, 1x t dxψ
+∞

−∞

=∫ . Furthermore, ( )
2

,x tψ  is called the probability density for 

finding the particle at position x  and at time t . Before we proceed further to solve the TDSE 

using variable separation method, we will briefly go over the meaning of a particle in classical 

and quantum mechanics. 

 

 Classical Versus Quantum Mechanical Picture of Motion of a Particle: 

If a particle of mass  m  under the influence of a conservative force
3
 F  is moving along 

the x -axis (our favourite one dimension is chosen to obtain a simple picture), classical 

mechanics gives us position of the particle at any given time, ( )x t , using Newton’s equation of 

motion: 
2

2

d x dV
m F

dt dx
= = − , if initial condition is already given (i.e., position and velocity at 

0t =  is known). When ( )x t  is known, we can easily figure out velocity v
dx

dt

 
= 

 
, momentum 

( )p mv= , kinetic energy 21
v

2
m

 
= 
 

, or any other classical dynamical variable associated with 

motion of the particle for any arbitrary time. Our classical or local notion of motion of a particle 

is depicted in Figure 2.1(a). 

 

 

 

 

 

 

 

Figure 2.1: (a) Classical picture of motion of a particle. Relative positions are shown for two 

different times. (b) Quantum mechanical picture of motion of a particle. The probability density 

which represents delocalized body of a quantum particle evolves over time.  
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In quantum mechanics, the description of a particle is given by its wavefunction ( , )x tψ . 

We get the wavefunction by solving the time-dependent Schrödinger equation (TDSE). Given 

the initial condition, ( ),0xψ , the TDSE can determine ( ),x tψ
 
 for any arbitrary time. The 

wavefunction, by its nature, is spread out in space (delocalized over the space) for any given 

time t . The global (delocalized) nature of the wavefunction of the particle at any given time 

contradicts our classical (or local) notion that as the wavefunction represents a particle, it must 

be localized at a point on the x -axis. How can a delocalized mathematical function 

(wavefunction) represent a particle which is supposed to be localized? 

Quantum mechanics does not give any direct answer to the above question. Only a 

statistical or probabilistic answer to the above question is provided by quantum mechanics. The 

probability (or more specifically probability density ( , )x tρ ) of finding the particle at point x  

and at time t  is given by 
2 *( , ) ( , ) ( , ) ( , )x t x t x t x tρ ψ ψ ψ= = ⋅ . Figure 2.1(b) illustrates probability 

density of the moving particle at two different times. According to the definition, 
2

( , )x t dxψ  is 

the probability of finding the particle between x  and ( )x dx+ . As 
2

( , )x t dxψ  represents the 

area under the graph 
2

( , )x tψ  for dx  interval, statistical interpretation illuminates an 

important fact that at 1t t= ,  the particle is more likely to be found near the point A  than near 

the point B  and at 2t t= , the particle is more likely to be found near the point B  than near the 

point A . In addition, total probability of finding the particle over all space at a given time must 

be 1 (one). This is represented by the integral of 
2

( , )x tψ : 

2
( , ) 1x t dxψ

+∞

−∞

=∫  ..... (2) 

 When a wavefunction satisfies above condition, it is called a normalized wavefunction. 

Therefore, a physically realizable wavefunction which can represent the particle and which is a 

solution to the TDSE must be a normalizable wavefunction. If a wavefunction cannot be 

normalized, it is not acceptable as a solution to the TDSE because statistical interpretation 

(physically realizable interpretation) of such wavefunction fails. 

 

Variable Separation: 

The TDSE is solved by a separation of variables in position and time.
4
 This is done under 

the assumption that ( ),x tψ  can be written as 
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( ) ( ) ( ),x t x tψ ψ ψ= ⋅  ..... (3) 

and Ĥ  does not explicitly depend on time. Substituting this trial solution into equation (1), we 

get 

( ) ( ) ( ) ( )ˆi x t t H x
t

ψ ψ ψ ψ
∂

=
∂

�  

or, 
( )

( )
( )

( )
1 1 ˆi t H x

t t x
ψ ψ

ψ ψ

∂
=

∂
�  ..... (4) 

We immediately notice that the left hand side of equation (4) is a function of only time while 

the right hand side is a function of only position (as mentioned earlier Ĥ  does not explicitly 

depend on time). Therefore, both sides much be equal to a constant (say E ). Then, we obtain 

two equations by separating the variables: 

( ) ( )i t E t
t
ψ ψ

∂
=

∂
�  ..... (5) 

and ( ) ( )Ĥ x E xψ ψ=  ..... (6) 

Solution to equation (5) can be given as 

( )
 

0

iEt

t eψ ψ
−

= �  ..... (7) 

Equation (6), on the other hand, is called the time-independent Schrödinger equation (TISE). 

This equation is an “eigenvalue” equation: the constant E  is called the eigenvalue and ( )xψ  is 

called the eigenfunction (eigenstate). In the present context, the spectrum of a system (often 

used in spectroscopy) is defined as the set of energies supporting physically meaningful 

solutions to equation (6). 

 Thus, using equation (3), a solution to the TDSE can be written as 

( ) ( )
 

0,
iEt

x t x eψ ψ ψ
−

= �  

Here, 0ψ  is just a multiplicative factor and therefore, considering the normalization condition 

( )
2

, 1x t dxψ
+∞

−∞

=∫ , without loss of any information, one can write a solution to the TDSE as 
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( ) ( )
 

,  
iEt

x t x eψ ψ
−

= �  ..... (8) 

In general, TISE (equation (6)) gives a set of solutions. Each solution is represented by 

( )n
xψ  which is called a stationary state wavefunction, wherein n  denotes the n -th state. 

Often, in chemistry, different spectroscopic properties of an atom or a molecule are expressed 

using these stationary states. Therefore, a more appropriate way of writing a solution to the 

TDSE is 

( ) ( )
 

,  
niE t

n n
x t x eψ ψ

−

= �  ..... (9) 

Here, ( )  
n

xψ
 
represents the n -th stationary state with energy nE , and 

 niE t

e
−
�  is associated 

phase factor. More details of meaning of a phase factor in a time-dependent wavefunction can 

be found in Chapter 3. In brief, for any complex number written in polar form (
i

re
θ

), phase 

factor is the complex exponential factor (
i

e
θ

). Phase factor can change the phase of the 

wavefunction; however, it does not change the probability density. 

 

 

:Guiding Questions: 

 

2.1: One key method of solving the TDSE discussed above is “variable separation”. We have 

seen that the TDSE is separable when Ĥ  is independent of time. Ĥ  is Hamiltonian operator 

which includes the kinetic 
2 2

22m x

 ∂
− 

∂ 

�
 and the potential ( )( )V x  energy terms. By construction, 

the kinetic energy term does not depend on time; however, the potential energy term V  can 

be a function of both time and space. Therefore, the TDSE is separable when V

 

is independent 

of time (only depends on space). This argument is not entirely correct. Variable separation 

method can also be employed when V  is a function only of time everywhere in space. If ( )V t  

is expressed as 0 0cos( )V tω , find out an expression for ( ),x tψ . 

2.2: For a certain one-dimensional particle of mass m , the wavefunction is given by 

( )
2

 
 ,  

amx

iat
x t Ae eψ

−
−= � , where, A and a are real positive constants. Find out the potential 

energy for which the above wavefunction satisfies the TDSE. 
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Stationary and Superposition States: 

 

 

:Metaphor: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An octopus can change skin colour. Let us assume that an octopus localized in the (
1 2x x− ) 

space changes colour periodically. Then the octopus represents a stationary state wavefunction 

of a particle. A wavefunction of a stationary state contains time-dependent phase factor which 

changes the phase of the wavefunction periodically (equivalent to change of colour); however, 

the particle does not move due to presence of its own time-dependent phase factor. Only a 

superposition state of the particle allows the particle to evolve in time. 

 

 

 

Given a solution to TDSE, as illustrated above, one can find out the probability density of 

the particle for the n -th stationary state: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
 2 2* * *, , ,   

n niE t iE t

n n n n n n n n
x t x t x t x e x e x x xψ ψ ψ ψ ψ ψ ψ ψ

−

= ⋅ = ⋅ = ⋅ =� �  

We immediately realize that the probability density is independent of time! If the probability 

density does not change with time, there is no time-dependence or in other words, there is no 

effective motion of the particle. This is why this state is called a stationary state. 
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 If we want to describe motion of a quantum particle, we have to describe the quantum 

system not by a particular solution (stationary state) given in equation (9), rather by a linear 

combination of particular solutions (stationary states). We may note here that any linear 

combination of particular solutions is also a solution to the TDSE. When a linear combination of 

particular solutions (stationary states), each with its own characteristic time-dependent phase 

factor, is used to describe a quantum system, we obtain time-dependence in the probability 

density. Such a state is called superposition state.
5
 

 For example, let us assume that a particle can be represented by following 

wavefunction: 

( ) ( ) ( )
1 2  

1 1 2 2,      
iE t iE t

x t a x e a x eψ ψ ψ
− −

= +� �  

Then the probability density for finding the particle is given by 

( ) ( ) ( ) ( ) ( )
1 2( )

2 2 22 2 * *

1 1 2 2 1 2 1 2,         . .
i E E t

x t a x a x a a x x e c cψ ψ ψ ψ ψ
− −

= + + +�  

The above equation has three important terms. The first one from pure ( )1 xψ , the second one 

from pure ( )2 xψ , and the third one from an interference term between two states. The 

interference term is a result of having a superposition of eigenstates with different energies – 

called a wavepacket. All the time-dependence of ( ),x tψ  is contained in this interference term. 

Therefore, a wavepacket, which originates from a superposition of stationary states having 

different energies, is required in order to have a time-dependence in the probability density 

and in other observables, such as average position or average momentum of the particle. 

Thus, the general solution to the TDSE can be given by 

( ) ( )
1

,   
niE t

n n

n

x t a x eψ ψ
∞

=

=∑ �  (if stationary states have discrete spectrum/energy states) 

or, ( ) ( )
 

0

,   
iEt

E E
x t a x e dEψ ψ

∞
−

= ∫ �  (if stationary states have continuous spectrum) 

 Here, E
a  is amplitude and 

 
iEt

e
−
�  is phase factor. Therefore, to observe quantum dynamics, a 

wavepacket must be constructed with characteristic amplitudes and phase factors. 
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:Guiding Question: 

 

2.3: If m
ψ  and n

ψ , respectively represented by ( ) ( )
 

,  
miE t

m m
x t x eψ ψ

−

= �  and 

( ) ( )
 

,  
niE t

n n
x t x eψ ψ

−

= �  , are solutions to the TDSE, show that following wavefunction also 

satisfies the TDSE. 

( ) ( ) ( )
  

,   
m niE t iE t

m m n n
x t a x e a x eψ ψ ψ

− −

= +� �  

 

 

 

Simple Examples: 

(a) Electronic Superposition State:  

 

 

 

 

 

 

 

Figure 2.2: Electronic wavefunctions of the ground 
2

g

+∑
 
and first electronically excited

2

u

+∑   

states of 
2

H +
. We may note here that each molecular orbital (

2

g

+∑  or 
2

u

+∑ ) is expressed as a 

linear combination of atomic orbitals (LCAO). LCAO, by its nature of construction, carries the 

sense of “superposition”; however, LCAO is not considered a “superposition” scheme because 

corresponding (time-dependent) phase factor associated with each atomic orbital are not 

considered in LCAO. So, to be precise, a “superposition” scheme involves adding states with their 

corresponding (time-dependent) phase factor. 
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One of the simplest examples of an electronic superposition state which can be easily 

realized is perhaps a superposition state created by the two lowest-lying 
2

g

+∑  and 2

u

+∑  

electronic states of 
2

H + .
6
 The electronic wavefunctions of these two states (they are depicted in 

Figure 2.2) can be written as 

( ) ( )
 

0 0, ; = ;  
giE t

g gr t R r R eψ ψ
−
�  

and ( ) ( )
 

0 0
, ; = ;  

uiE t

u u
r t R r R eψ ψ

−
�  

Here, we have assumed that the nuclear positions are fixed at the equilibrium geometry 0( )R  

of the ground electronic state. 

 Thus, the total electronic wavefunction of the superposition state can be expressed as 

( ) ( ) ( )

( ) ( )

0 0 0

  

0 0

, ; , ;  + , ;

                 = ;   ;  
g u

g u

iE t iE t

g u

r t R r t R r t R

r R e r R e

ψ ψ ψ

ψ ψ
− −

=

+� �

 

Finally, the time-dependent electron density is given by 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 * *

0 0 0

  
* *

0 0 0 0

( )
2 2 *

0 0 0 0

, ; , ; , ;

                   ;   ;  ;   ;  

                   ; ; ; ; . .

      

g gu u

u g

iE t iE tiE t iE t

g u g u

i E E t

g u g u

r t R r t R r t R

r R e r R e r R e r R e

r R r R r R r R e c c

ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

− −

−

 = ⋅ 

   
= + ⋅ +   
      

= + + +

� � � �

�

( ) ( ) ( ) ( )
2 2

0 0 0 0

( )
             ; ; 2 ; ; cos

u g

g u g u

E E t
r R r R r R r Rψ ψ ψ ψ

− 
= + +  

 �

 

because, ( )0;
g

r Rψ   and ( )0;
u

r Rψ  are real and are given, respectively, by 

( ) ( )0 1 , 1 ,

1
;

2
g s A s B

r Rψ ϕ ϕ= +  

and ( ) ( )0 1 , 1 ,

1
;

2
u s A s B

r Rψ ϕ ϕ= − .  

Here, 1 ,s A
ϕ  and 1 ,s B

ϕ  refer to the 1s  orbitals of two hydrogen atoms denoted as A  and B , 

respectively: 



13 

 

TDQC: ABh+ERB (IISc+CSU) 2021 

( ) ( ) ( ) ( ) ( )
22 2

0 0 0 0 0, ; ; ; 2 ; ; cos
ug

g u g u

E t
r t R r R r R r R r Rψ ψ ψ ψ ψ

∆ 
= + +  

 �
 ..... (10) 

in which, 
ug

E∆  represents the energy separation between 
2

g

+∑  and 2

u

+∑  electronic states of 

2H + . The above equation shows that time-dependent electron density oscillates with a period 

of 
ug

E∆

�
.  

  

  

 

 

 

 

 

 

 

Figure 2.3: Time-dependent electron density following the preparation of the electronic 

superposition state. 
. 

 

For 2H + , 
ug

E∆  is 11.83967 eV
7
 at the equilibrium geometry of the ground electronic 

state and therefore, oscillation time period of the time-dependent electron density is calculated 

to be 348  attosecond (where, 1 attosecond 
181 10−= ×  second). But how does this electron 

density change after creating the superposition state? 

We know that a cosine function can take any value between 1+  and 1− . To visualize the 

temporal evolution of the electron density of the superposition state, we may consider 1+ , 0  

and 1−  values. 
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(a) cos 1
ug

E t∆ 
= + 

 �
 or, at 0t = : 

( ) ( ) ( ) ( ) ( )
2 2

2

0 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,

2 2 2 2 2 2

1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,

2 2 2

1 , 1 , 1 , 1

1 1 1 1
, ; 2

2 2 2 2

1
                   2 2

2

                   

s A s B s A s B s A s B s A s B

s A s B s A s B s A s B s A s B s A s B

s A s B s A

r t Rψ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= + + − + + −

 = + + + + − + − 

= + + − 2

,

2

1 ,                   2

s B

s Aϕ=

 

Thus, at 0t = , when the superposition state is just created, the total electron density will be 

localized at one hydrogen atom (atom A , as depicted in Figure 2.3). 

(b) cos 0
ug

E t∆ 
= 

 �
 or, at 

2
ug

t
E

π
=

∆

�
: 

( ) ( ) ( )
2 2

2

0 1 , 1 , 1 , 1 ,

2 2 2 2

1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,

2 2

1 , 1 ,

1 1
, ;

2 2

1
                   2 2

2

                   

s A s B s A s B

s A s B s A s B s A s B s A s B

s A s B

r t Rψ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ

= + + −

 = + + + + − 

= +

 

Thus, at 
2

ug

t
E

π
=

∆

�
 after the superposition state is created, the total electron density will be 

delocalized over the both hydrogen atoms (as depicted in Figure 2.3). 

(c) cos 1
ug

E t∆ 
= − 

 �
 or, at 

ug

t
E

π=
∆

�
: 

( ) ( ) ( ) ( ) ( )
2 2

2

0 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,

2 2 2 2 2 2

1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,

2 2 2

1 , 1 , 1 , 1

1 1 1 1
, ; 2

2 2 2 2

1
                   2 2

2

                   

s A s B s A s B s A s B s A s B

s A s B s A s B s A s B s A s B s A s B

s A s B s A

r t Rψ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= + + − − + −

 = + + + + − − + 

= + − + 2

,

2

1 ,                   2

s B

s Bϕ=
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Thus, at 
ug

t
E

π=
∆

�
 after the superposition state is created, the total electron density will be 

again localized at another hydrogen atom (atom B , as depicted in Figure 2.3) 

 

 

 

 

:Guiding Question: 

 

2.4: Effect of Vibration on an Electronic Superposition State: In the above analysis of electronic 

superposition state, we have assumed that 2H +  ion has only frozen equilibrium geometry ( )0R . 

But this is clearly an oversimplified assumption because ground vibrational state wavefunction, 

even under quantum harmonic oscillator approximation, exhibits a spatial distribution. How 

does this affect the time-evolution of an electronic superposition state? 

 

Hint: Consider Born-Oppenheimer total wavefunction as 

( ) ( ) ( ) ( )
  

,    
g u

iE t iE t

g u
x t R x e x eψ χ ψ ψ

− − 
= + 

  

� �  

First and second terms on the right-hand side are respectively nuclear and electronic parts of the 

total wavefunction. 

 

 

 

(b) Vibrational Superposition State: 

  

 

 

 

 

 

 

Figure 2.4: (a) Vibrational motion of a diatomic molecule is represented by a spring with two 

masses; (b) Reduced mass connected to the wall by a spring. 
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One of the simplest examples of vibrational superposition state can perhaps be realized 

from a superposition of the ground and the first excited state of a diatomic quantum harmonic 

oscillator. A quantum harmonic oscillator is a good model for a vibrating diatomic molecule. 

Under this model, a diatomic molecule can be represented by a spring, as shown in Figure 

2.4(a). In this figure, 1m  and 2m  are masses of two atoms. Equilibrium bond distance is 0R  and 

R  represents instantaneous bond length during the vibration. Therefore, if 0( ) 0x R R= − > , the 

spring is stretched and if 0x < , the spring is compressed. 

Considering the reduced mass 1 2

1 2

m m

m m
µ =

+
, and based on the relative coordinate 

0( )x R R= − , the above two-body problem can be conveniently reduced to a one-body problem 

as given in Figure 2.4(b). The vibration of the one-body system is governed by 
k

ω
µ

=  where, 

k  is the force constant, representing a measure of stiffness of the spring (a small value of k  

implies a weak bond and a large value of k  implies a strong bond), and ω  represents the 

frequency of the vibration (in radian per seconds). 

The time-independent Schrödinger equation (TISE) for the reduced one-body problem is 

given by , 
2 2

2

2

1
 ( )  ( )

2 2
kx x E x

m x
ψ ψ

  ∂
− + =  

∂  

�
. When this second order differential equation 

is solved, well-behaved wavefunctions are obtained for the energy values 

1
2 1

v
2

v

k
E

µ

   
= +  

  
�

, where v 0,1,2,3,...= . The wavefunctions corresponding to these v
E   are non-degenerate 

states expressed by Hermite polynomials. Details of this solution and expressions of Hermite 

polynomials can be found in most of the standard quantum chemistry text books.
8
 Here, we are 

only interested in ground 0 ( )xψ  and first excited 1( )xψ  vibrational states of the quantum 

harmonic oscillator. They are given by (as depicted in Figure 2.5) 

1
24

0 ( ) exp
2

x
x

α α
ψ

π

 − 
=   
   

 and 

1
3 24

1

4
( )  exp

2

x
x x

α α
ψ

π

   −
=    
     

where, 
2

kµ
α =

�
.  
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Figure 2.5: Vibrational wavefunctions of the ground and the first excited states of a diatomic 

molecule.  

 

Then the superposition state created by the ground and the first excited states of a 

diatomic quantum harmonic oscillator can be written as 

( ) ( ) ( )
0 1

0 1

0 1

11
2 3 244

,     

4
           exp   exp  

2 2

iE t iE t

iE t iE t

x t x e x e

x x
e x e

ψ ψ ψ

α α α α

π π

− −

− −

= +

     − − 
= +      
       

� �

� �

 

 

Finally, the probability density of the vibrational superposition state is given by 

( ) ( ) ( ) ( ) ( )

( ) ( )

( )

2 2 2
10

0 1 0 1

11
3 22

2 2 2

11
3 44

2

,   2   cos

4
              exp   exp

4
                                                                     +2 exp  

E t
x t x x x x

x x x

x x

ψ ψ ψ ψ ψ

α α
α α

π π

α α
α

π π

∆ 
= + +  

 

  
= − + −  
   

  
−  

   

�

10 cos
E t∆ 

 
 �

 

As we have considered earlier, to visualize the temporal evolution of the vibrational 

superposition state, we may consider 1+ , 0  and 1−  values of the cosine function. 
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Figure 2.6: Time-dependent density of the vibrational superposition state following its 

preparation. 

 

 

(a) 10cos 1
E t∆ 

= + 
 �

 or, at 0t = : 

( ) ( ) ( ) ( )
1 11 1

3 32 42 42 2 2 2 2

2
11

2 3 244

4 4
, exp   exp 2   exp

4
              exp   exp

2 2

x t x x x x x

x x
x

α α α α
ψ α α α

π π π π

α α α α

π π

      
= − + − + −      
      

      − −  = +      
         

 

Thus, at 0t = , when the superposition state is just created, maximum of the probability density 

appears at position B (as shown in Figure 2.6). 
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(b) 12cos 0
E t∆ 

= 
 �

or, at 
102

t
E

π
=

∆

�
: 

( ) ( ) ( )
11

3 222 2 2 24
, exp   expx t x x x

α α
ψ α α

π π

  
= − + −  
   

 

Thus, at 
102

t
E

π
=

∆

�
 after the superposition state is created, maximum of the probability 

density appears at position A (as shown in Figure 2.6). 

(c) 10cos 1
E t∆ 

= −  �
 or, at 

10

t
E

π=
∆

�
: 

( )

2
11

2 3 2442 4
, exp    exp

2 2

x x
x t x

α α α α
ψ

π π

      − −  = −      
         

 

Thus, at 
10

t
E

π=
∆

�
 after the superposition state is created, maximum of the probability density 

appears at position C (as shown in Figure 2.6). 

 

 

 

 

:Guiding Question: 

 

2.5: Consider the superposition of the ground and the second excited states of the quantum 

harmonic oscillator. Show how the time-dependent probability density would oscillate for this 

vibrational superposition state? 

 

Hint: Use following wavefunctions for the ground and the second excited vibrational states of a 

quantum harmonic oscillator:  
1

24

0 ( ) exp
2

x
x

α α
ψ

π

 − 
=   
   

 and ( )
1

24
2

2 ( ) 2 1  exp
4 2

x
x x

α α
ψ α

π

 − 
= −   
   

, where, 
2

kµ
α =

�
. 
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Exercises: 
 

2.6: For a certain one-dimensional particle of mass m , the wavefunction is given by 

( )
 

 ,  
iamx

iat
x t Ae eψ

−
−= � , where, A  and a  are real positive constants. Find out the potential 

energy for which the above wavefunction satisfies the TDSE. 

2.7: For a certain one-dimensional particle of mass m , the wavefunction is given by 

( )
 

 ,  
iEt

ikx
x t Ae eψ

−
−= � , where, 

2

2mE
k =

�
 and E  is the total energy of the particle. Find out the 

potential energy for which the above wavefunction satisfies the TDSE. 

2.8: If we assume that ( ),x tψ
 
is a linear combination of the first two lowest-lying states of a 

particle in a one-dimensional box. Calculate the probability density associated with ( ),x tψ . 

Pictorially depict how does the probability density periodically move from one side of the box 

to the other side of the box as a function of time? 

2.9: The TDSE given by ( ) ( )
2 2

2
, ( ) ,

2
i x t V x x t

t m x
ψ ψ

  ∂ ∂
= − +  

∂ ∂  

�
�

 
represents a single particle 

of mass m  experiencing a time-independent potential. If suddenly an additional constant 

potential 0V  starts acting on the particle, what changes do you expect on the wavefunction and 

the probability density? 
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Chapter 2A: Answers 

2.1: One can write down the TDSE, ( ) ( ) ( )
2 2

2
ˆ, , ( ) ,

2
i x t H x t V t x t

t m x
ψ ψ ψ

 ∂ ∂
= = − + 

∂ ∂ 

�
� . One 

can now use variable separation method and insert ( ) ( ) ( ),x t x tψ ψ ψ= ⋅
 
into the above 

equation. Rearranging the time- and space-dependent terms (as we did before) one can write, 

( )
( )

( )
( )

2 2

2

1 1
( )  (constant)

2
i t V t x E

t t x m x
ψ ψ

ψ ψ

 ∂ ∂
− = − = 

∂ ∂ 

�
�  

and as a result, we get two equations (space and time-dependent, respectively). We will 

carefully look at time-dependent equation, 
( )

( )
1

( )i t V t E
t t

ψ
ψ

∂
− =

∂
� . 

As 0 0( ) cos( )V t V tω= , one can rewrite the time-dependent equation as follows,  

( ) ( )
( )

( )
0

t V t E
t

t i

ψ
ψ

∂ − +
+ =

∂ �
 

..... (3) 

The above equation has a form of first order differential equation, ( ) ( )
y

P x y Q x
t

∂
+ =

∂
, which 

can be solved using the integrating factor 
( )P x dx

e∫  . Comparing the equation (3) and the 

standard form given above, one can determine the appropriate integrating factor which can be 

used to multiply both sides of equation (3) to obtain the solution. The integrating factor for the 

present problem taking the time limit [ ]0, t  is 

( )
0

0
00

( ) 1
sin

t
V t E Vdt t Et

i i
e e

ω
ω

− +  −
+ 

 
∫

=
� �

 . 

Thus, one can rewrite the equation (3) as 

( ) ( )
( )

0 0
0 0

0 0

1 1
sin sin( )

0

V V
t Et t Et

i it V t E
e t e

t i

ω ω
ω ωψ

ψ

   − −
+ +   

   
∂ − +

+ =
∂

� �

�
 

or, ( )
0

0
0

1
sin

0

V
t Et

i
t e

t

ω
ωψ

 −
+ 

 
 ∂
  =

∂  
 

�

 

or, ( ) ( )
0

0
0

1
sin

0 0

V
t Et

i
t e

ω
ωψ ψ

 −
+ 

  − =
�

 taking time limit as [ ]0, t  
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or, ( ) ( )
0

0
0

1
sin

0

V
t Et

i
t e

ω
ωψ ψ

 
+ 

 =
�

. 

Therefore, total wavefunction (which depends both on space and time) can be written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

0 0
0 0

1
sin sin

, 0 0

V ViiEt Et tti
x t x t x e x e e

ω ω
ω ωψ ψ ψ ψ ψ ψ ψ

   −−+   
   = ⋅ = =
� �

�  

Compare the above solution with the earlier form wherein V was assumed to be independent 

of time, ( ) ( )
 

,  
iEt

x t x eψ ψ
−

= �  . Thus, we notice that due to presence of a purely time-

dependent potential, a phase factor is introduced to the total wavefunction. As in the end, 

( )
2

,x tψ  represents the probability density, this state represented by the wavefunction 

( ) ( ) ( )
0

0
0

sin

, 0

ViiE tt

x t x e e
ω

ωψ ψ ψ

 −−  
 =
�

�  illustrates a stationary state (probability density is time-

independent). 

    

2.2: As ( )
2

 
 ,  

amx

iat
x t Ae eψ

−
−= � , we get 

( )
( )

,
( ) ,

x t
ia x t

t

ψ
ψ

∂
= −

∂  

and 
( )

( )
,

( 2 ) ,
x t am

x x t
x

ψ
ψ

∂
= −

∂ �
or, 

( )
( ) ( )

( )

22

2

2

, 2
2  ,  ,

2 2
               1  ,

x t am am
x x t x t

x

am am
x x t

ψ
ψ ψ

ψ

∂  
= − − 

∂  

 
= − −  

� �

� �

 

From the TDSE, we get 

( ) ( )
2 2

2
, ,

2
i x t V x t

t m x
ψ ψ

  ∂ ∂
= − +  

∂ ∂  

�
�  

Or,  
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Chapter 3: General Principles of Time-Dependent Quantum 

Mechanics 

Highlights: Time-Dependent Behaviour of the Probability Density and the 

Expectation Value 

 

In this chapter, we will revise a set of postulates
1
 and their consequences based on 

which different time-dependent quantum descriptions of physical or chemical systems are 

formulated. Readers are referred to a lovely text book Quantum Mechanics by Cohen-

Tannoudji et al., wherein several postulates of quantum mechanics are discussed in adequate 

details.
2
 For our present interest in developing the subject time-dependent quantum chemistry, 

we will go over the general postulates of quantum mechanics from a time-dependent point of 

view. In particular, as quoted by Cohen-Tannoudji et al., the following questions are relevant in 

the present context: 

(a) How is the state of a quantum system at a given time described mathematically? 

(b) How can the state of a quantum system at any arbitrary time t  be found if the state at time 

0t =  is known? 

(c) How can we predict the results of the time-dependent experimental measurement of various 

dynamical quantities using the time-dependent quantum mechanics? 

We will see that the content presented in this chapter provides an answer to the above 

questions. 

 

General Characteristics of a Wavefunction: 

  We have already noted in Chapter 2 that, in quantum mechanics, a complete 

description of motion of a particle is given by its wavefunction ( , )x tψ  obtained by solving the 

time-dependent Schrödinger equation (TDSE): ( ) ( )
2 2

2
, ( ) ,

2
i x t V x x t

t m x
ψ ψ

 ∂ ∂
= − + 

∂ ∂ 

�
� , if the 

initial wavefunction ( ),0xψ

 

is given.
3
  Exact form the wavefunction depends on the potential 

( )V x

 

experienced by the particle. 
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We have also noted that a wavefunction, by its nature, is always delocalized over the 

entire space (over the entire x -axis) for any given time t . However, the statistical 

interpretation of the wavefunction illuminates the fact that the probability (more technically 

probability density ( , )x tρ ) for finding the particle at point x  and at time t  is given by 

2 *( , ) ( , ) ( , ) ( , )x t x t x t x tρ ψ ψ ψ= = ⋅  and this is why the particle is more likely to be found near a 

point on the x -axis where 
2

( , )x tψ  is maximum. In addition, a wavefunction, which can be 

considered as an acceptable solution to the TDSE of a particular system, must be a normalized 

wavefunction to maintain unit probability density over all space. The total probability of finding 

the particle over all space must be equal to 1 (because we have only one particle). 

 We will pause here and ask a number of questions relevant to the time-dependent 

behaviour of a wavefunction in the light of the above discussion: 

(a) How do we normalize a wavefunction at 0t = ? 

(b) If a wavefunction is normalized at 0t = , does it remain normalized for all later times? 

 

Normalizing a Wavefunction: One can normalize a wavefunction using the normalization 

condition 

2
( , ) 1x t dxψ

+∞

−∞

=∫  ..... (1) 

Let us take an example to illustrate this point. Assume that the wavefunction of a particle at 

0t =  has following Gaussian form: 

2

( ,0)  ax
x A eψ −= ; where, A  and a  are real and positive constants. 

Then, the probability density is given by 

2
2 2( ,0)  ax

x A eρ −=  

Now employing the normalization condition we get, 

2
2 2 1ax

A e dx

+∞
−

−∞

=∫  

And, 
2 1

2
A

a

π
= , using the standard Gaussian integral, 

2

2 4
  

b
c

aax bx c
e dx e

a

π
 

+∞ +  − + +  

−∞

=∫  
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And, 

1
42a

A
π

 
=  
 

 which is normalization constant. 

Thus, the normalized Gaussian wavefunction at 0t =  has following form, 

2

1
42

( ,0)  axa
x eψ

π
− 

=  
 

 

 Therefore, it is obvious from the above analysis that, even if a wavefunction is not 

normalized (i.e., the integral in equation 1 equals some constant), we can make it normalized 

by using normalization condition. Here, we must note that if a wavefunction cannot be 

normalized, it is not acceptable as a solution to the TDSE because the statistical 

interpretation (which is the only physically realizable interpretation) of such wavefunction 

fails. In fact, ( ),x tψ
 
will be considered as physically acceptable wavefunction (a physically 

acceptable wavefunction is also called a well-behaved wavefunction) if and only if 

(a) *ψ ψ must be single-valued, 

(b) Not infinite over a finite range, 

(c) Continuous everywhere, 

(d) Possesses continuous first derivative, 

and (e) Normalizable. 

 

Time-Dependence of Normalization Constant: Our next concern pertaining to the time-

dependent behaviour of a wavefunction is that even if a wavefunction is normalized at 0t = , 

does it remain normalized for all later times? This question can be rephrased as, “Can 

normalization constant A  be a function of time?” To find an answer to this question we will 

consider the time-derivative of the probability density: 

*
2 * *( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )
x t x t

x t x t x t x t x t
t t t t

ψ ψ
ψ ψ ψ ψ ψ

∂ ∂ ∂ ∂
 = ⋅ = + ∂ ∂ ∂ ∂

 ..... (2) 

(following the product rule for the derivative operator) 

From the TDSE, on the other hand, we get, 

( ) ( )
2 2

2
, ( ) ,

2
i x t V x x t

t m x
ψ ψ

 ∂ ∂
= − + 

∂ ∂ 

�
�  

And, 
( ) ( )

( )
2

2

, ,
,

2

x t x ti iV
x t

t m x

ψ ψ
ψ

∂ ∂
= −

∂ ∂

�

�  
..... (3)  
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And taking complex conjugate of the above equation, we get 

( ) ( )
( )

* 2 *

*

2

, ,
,

2

x t x ti iV
x t

t m x

ψ ψ
ψ

∂ ∂
= − +

∂ ∂

�

�  
..... (4)  

Inserting equation (3) and (4) into equation (2), we get 

( )
( )

( )
( )

( )
( ) ( )

( )
( ) ( )

2 * 2
2 * *

2 2

2 2 *

*

2 2

*

*

, ,
( , ) , ( , ) ( , ) ,

2 2

, ,
                  , ( , )

2

, ,
                  , ( , )

2

x t x ti iV i iV
x t x t x t x t x t

t m x m x

x t x ti
x t x t

m x x

x t x ti
x t x t

m x x x

ψ ψ
ψ ψ ψ ψ ψ

ψ ψ
ψ ψ

ψ ψ
ψ ψ

   ∂ ∂∂
= − + + −   

∂ ∂ ∂   

 ∂ ∂
= − 

∂ ∂ 

 ∂ ∂∂
= −

∂ ∂ ∂ 

� �

� �

�

�


 

Integrating both sides in the limit [ ],−∞ +∞ , we get 

( )
( ) ( )*

2 *
, ,

( , ) , ( , ) 0
2

x t x ti
x t dx x t x t

t m x x

ψ ψ
ψ ψ ψ

+∞
+∞

−∞ −∞

 ∂ ∂∂
= − = 

∂ ∂ ∂ 
∫

�
 

And, 
2

( , ) 0
d

x t dx
dt

ψ
+∞

−∞

 
= 

 
∫

 

.....(5)  

because ψ  or 
*ψ  is zero at x = ±∞  

(an important characteristic of a well-behaved wavefunction). 

 

Here we note that a total derivative 
d

dt
 is used for the above integral which is a function 

only of t , and a partial derivative 
t

∂

∂
 is used for integrand which is a function of both x  and t . 

Equation (5) illuminates an important fact that once ( , )x tψ  is normalized, it remains 

normalized at any later time. Or in other words, total probability density does not change over 

time. This is a remarkable property of the TDSE that it automatically preserves the 

normalization of the wavefunction. 
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:Guiding Questions: 

 

3.1: In variable separation method (see Chapter 2), we have seen that E  is a constant. Prove 

that E  must be a real constant for a normalizable wavefunction. 

 

Hints: use 
2

( , ) 0
d

x t dx
dt

ψ
+∞

−∞

 
= 

 
∫  

3.2: For a moment, if we assume that 

2
2 22( , ) ( )

t
d

x t dx A x e
dt

ε

ψ ψ
+∞

−∞

 
= 

 
∫ �

 

 is true for a system. 

Find out meaning of this time-dependent total electron density. 

 

3.3: Write down the complex conjugate of the following equations: 

( ) ( )
2 2

2
, ( ) ,

2
i x t V x x t

t m x
ψ ψ

 ∂ ∂
= − + 

∂ ∂ 

�
�

 

and ( ) ( )Ĥ x E xψ ψ=  

3.4: Determine whether following wavefunctions at 0t =  are physically acceptable solution to 

the TDSE: 

(a) ( ,0)
x

x Aeψ −=  over the interval (0, )+∞ , (b) ( ,0)
x

x Aeψ −=  over the interval ( , )−∞ +∞ , (c) 

( ,0)
ikx

x Aeψ =  over the interval (0, )+∞ , (d) ( ,0)
ikx

x Aeψ =  over the interval ( , )−∞ +∞ . 

 

 

 

 The analysis given above leads us to two important postulates of time-dependent 

quantum mechanics in the context of motion of a quantum particle: 

 

Postulate 1 and its Consequences: The state of a quantum particle is completely defined by its 

(position- and time-dependent) wavefunction, ( ),x tψ . At time t , 
*
( , ) ( , ) ( , )x t x t dx x t dxψ ψ ρ⋅ =  

gives the probability of finding a particle in the dx  interval between x  and ( )x dx+  positions. 

Only a well-behaved wavefunction represents a physically realizable state of the particle. A well-

behaved wavefunction must be normalizable, its first derivative must be continuous and finite. 

Once a wavefunction is normalized, it remains normalized at any later time.   

 

Postulate 2 and its Consequences: The wavefunction of a particle evolves in time according to 

the time-dependent Schrödinger equation: ( ) ( )ˆ, ,i x t H x t
t
ψ ψ

∂
=

∂
� . We have already used this 
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postulate in Chapter 1 and have seen some of the consequences, rendering two important 

concepts – stationary and superposition states. A stationary state represents a state wherein 

the probability density remains independent of time and a superposition state represents a state 

wherein the probability density exhibits time-dependent change. 

 

In addition to above two postulates, we have already become familiar with another 

important postulate of quantum mechanics, without perhaps noticing it. So far, we have not 

given any formal introduction to the quantum mechanical operators. Our familiar Ĥ  is an 

operator corresponding to the total energy (classical observable) which appears in the TDSE.  

 

Postulate 3 and its Consequences: For every observable in classical mechanics, there 

corresponds a linear and Hermitian operator in quantum mechanics. Table I lists some examples 

of the quantum mechanical operators and their classical observables. 

 

Table I: Classical mechanical observables and corresponding quantum mechanical operators 

Quantum Mechanical Operator (one dimensional) Classical Observable 

Name Symbol Operation  

Hamiltonian Ĥ  2 2

2
( )

2
V x

m x

  ∂
− +  

∂  

�
 

Total Energy, E  

Potential Energy V̂  Multiply by ( )V x  Potential Energy, 

( )V x   

Kinetic Energy ˆ
x

K  2 2

22m x

 ∂
−  

∂ 

�
 

Kinetic Energy, xK  

Momentum ˆ
x

P  
i

x

∂ 
−  

∂ 
�  

Momentum, xp  

Position X̂  Multiply by x  Position, x  

 

 

 

 



31 

 

TDQC: ABh+ERB (IISc+CSU) 2021 

 

:Guiding Questions: 

 

TO BE ADDED 

 

 

 

Expectation Value and its Time-Evolution:  

In quantum mechanics, perhaps the most important introductory question is, “How can 

a delocalized mathematical function (wavefunction) represent a particle which is supposed to 

be localized (according to our classical or general consensus)?” We have understood that 

quantum mechanics only provides a probabilistic answer to this question in terms of the 

probability density ( , )x tρ  for finding the particle at point x  and at time t . Here we will further 

illuminate this point.  

 

 

 

 

 

 

Figure 3.1: A typical example of probability distribution of a particle in one dimension. 

 

We have mentioned earlier that a quantum "particle" with shape and size is defined by 

its wave function, ( , )x tψ , which of course depends on the potential energy term in the 

Hamiltonian. We have already realized that the wavefunction ( , )x tψ  itself can be a complex 

function; but, the probability density 
2 *( , ) ( , ) ( , ) ( , )x t x t x t x tρ ψ ψ ψ= = ⋅  (where 

*
( , )x tψ  is a 

complex conjugate of ( , )x tψ ) must always be real. Figure 3.1 illustrates a typical example of 

the probability density ( , )x tρ  distribution for a particle at time t . As 

2 *( , ) ( , ) ( , ) ( , )x t dx x t dx x t x t dxρ ψ ψ ψ= = ⋅  represents the area under the graph 
2

( , )x tψ  for 

dx  interval, one can easily conclude that the particle is more likely to be found near the point 

A  than near the point B  on the x -axis (shaded area near point A  is larger than that near the 
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point B ). But what does this probability density ( , )x tρ
 
distribution imply with regard to the 

experimental measurement? 

To address the above question, let us consider a large collection (a box) of identical 

hydrogen atoms. Each atom contains one electron and the time-independent Schrödinger 

equation for each atom renders wavefunctions of the electron, which are expressed as 

products of a spherical harmonic function and a radial function, and which depend on three 

quantum numbers ( n , l , and lm ).
4
 These wavefunctions are called atomic orbitals. Each 

atomic orbital exhibits specific size and shape describing a (three-dimensional) spatial 

distribution of the electron in the hydrogen atom. For example, the wavefunction with 1n = , 

0l =  and 0lm =  is called the 1s  orbital of the electron. Similarly, hydrogen atom has three 2 p  

orbitals (namely 2 xp , 2 yp and 2 zp ). We may recall that the probability density ( , )x tρ  

distribution, as given in Figure 3.1, very closely resembles the radial probability distribution of 

the electron in the 2 xp  orbital of a hydrogen atom, assuming that the nucleous remains at the 

(0,0)  position. Therefore, arguably, Figure 3.1 schematically depicts the probability for finding 

the electron in the 2 xp  orbital of a hydrogen atom at a distance x  from the nucleous. 

Now imagine the above-mentioned box contains a large collection of identical hydrogen 

atoms. Each atom has an electron which is present in the 2 xp  orbital. For the experiment, we 

first take out one hydrogen atom from the box and then perform a very precise and accurate 

experimental measurement to find out the position of the electron in the hydrogen atom (with 

respect to the nucleous). Definitely, experimentally we will get a specific position (say position 

A ) for the 2 xp  electron. Thereafter, we take out another hydrogen atom and repeat the 

position measurement process. In the second measurement, it is not necessary that we will find 

the electron at position A ; we may rather find the electron at a different position (say position 

B ). However, if we continue the probe for the large number of identical hydrogen atom 

samples, we will notice that frequency (or probability) of finding the position A  is larger than 

that of position B . In fact, repeated experimental measurement should finally render the same 

distribution which is predicted by quantum mechanics, if infinitely large collection of identical 

hydrogen atom samples is used. Therefore, probability density distribution directly connects 

quantum mechanical prediction to the possible experimental outcomes.    

One can very easily determine the average position of the electron (or the particle in 

general) from a repeated measurement. This average position should match the expectation 

value of position which can be computed using following equation for a given normalized 

wavefunction, 
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*( , )  ( , )x x t x x t dxψ ψ
+∞

−∞

= ∫  

Thus, for a given wavefunction, the expectation value of a physical or dynamical quantity 

provides a way to compute the average of repeated experimental measurements. This 

argument takes us to the fourth postulate of time-dependent quantum chemistry.   

 

Postulate 4: If a quantum mechanical system is described by a normalized wavefunction  

( ),x tψ
 
then the average value of an observable corresponding to the operator Â  is given by 

* ˆ( , )  ( , ) A x t A x t dxψ ψ
+∞

−∞

= ∫  , similarly, 
2 * 2ˆ( , )  ( , ) A x t A x t dxψ ψ

+∞

−∞

= ∫  and finally the variance 

of the measurement is given by 
22 2

A
A Aσ = − .  

  

From a time domain perspective, an obvious question arises here: How does the 

expectation value of position x  change as time progresses? We will illuminate this question 

below. 

 The expectation value of x  is given by 

*( , )  ( , )x x t x x t dxψ ψ
+∞

−∞

= ∫  

Taking the first derivative with respect to time, we get  

*
*( , ) ( , )

  ( , ) ( , )   
d x x t x t

x x t dx x t x dx
dt t t

ψ ψ
ψ ψ

+∞ +∞

−∞ −∞

∂ ∂
= +

∂ ∂∫ ∫
 

..... (6) 

We note here that on the left we have total derivative 
d

dt
 and on the right hand side we have 

partial derivative 
t

∂

∂
. Now from the TDSE, we know 

( ) ( )ˆ, ,i x t H x t
t
ψ ψ

∂
=

∂
�  

and, ( ) ( )
1 ˆ, ,x t H x t

t i
ψ ψ

∂
=

∂ �
 ..... (7)  
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And taking complex conjugate of the TDSE, we get 

( ) ( )
*

* 1 ˆ, ,x t H x t
t i
ψ ψ

∂  = −  ∂ �
..... (8) 

Inserting equations (7) and (8) into equation (6), we get 

( ) ( )
*

*1 1ˆ ˆ,   ( , ) ( , )  ,  
d x

H x t x x t dx x t x H x t dx
dt i i

ψ ψ ψ ψ
+∞ +∞

−∞ −∞

 = − + ∫ ∫
� �

 

..... (9) 

As Ĥ  is a Hermitian operator, one can write ( )
*

* ˆ ˆ     f H g dx g H f dx

+∞ +∞

−∞ −∞

=∫ ∫  

This is why we can write 

( ) ( )
*

*1 1ˆ ˆ,   ( , ) ( , )  ,  H x t x x t dx x t H x x t dx
i i

ψ ψ ψ ψ
+∞ +∞

−∞ −∞

 − = − ∫ ∫
� �

 

..... (10) 

Inserting equation (10) into equation (9) we get 

( ) ( )

( )

* *

*

1 ˆ ˆ( , )  ,  ( , )   ,  

1 ˆ ˆ        ( , )  ,  

d x
x t xH x t dx x t Hx x t dx

dt i

x t xH Hx x t dx
i

ψ ψ ψ ψ

ψ ψ

+∞ +∞

−∞ −∞

+∞

−∞

 
= − 

 

 
 = −  

 

∫ ∫

∫

�

�

 

or, ( )* ˆ ˆ( , )  ,  
d x i

x t Hx xH x t dx
dt

ψ ψ
+∞

−∞

 
 = −  

 
∫

�

 

..... (11) 

As Ĥ

 

 is expressed as 
2 2

2
( )

2
V x

m x

 ∂
− + 

∂ 

�
 , we can write 

2 2 2 2

2 2
ˆ ˆ  ( , ) ( )  ( , )  ( )  ( , )

2 2
Hx xH x t V x x x t x V x x t

m x m x
ψ ψ ψ

   ∂ ∂ − = − + − − +     ∂ ∂   

� �
 

As ( )
2 2 2

2 2 2
 2

d d d d d d d d
x x x x

dx dx dx dx dx dx dx dx

ψ ψ ψ ψ ψ ψ
ψ ψ

 
= + = + + = +  

, one can write, 
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2 2 2 2

2 2

2 2 2 2 2

2 2

2

ˆ ˆ  ( , ) ( )  ( , )  ( )  ( , )
2 2

                              2
2 2 2

                              

Hx xH x t V x x x t x V x x t
m x m x

d d d
x Vx x Vx

m dx m dx m dx

d

m dx

ψ ψ ψ

ψ ψ ψ
ψ ψ

ψ

   ∂ ∂ − = − + − − +     ∂ ∂   

= − ⋅ − ⋅ + + ⋅ −

= −

� �

� � �

�

 

The above equation can be further rewritten in terms of momentum operator. As 

ˆ
x

d
P i

dx

ψ
ψ = − � , one can write 

1 ˆ
x

d
P

dx i

ψ
ψ= −

�
. Therefore, we can write, 

2 1ˆ ˆ ˆ ˆ ( , )  ( , )  ( , )x x

i
Hx xH x t P x t P x t

m i m
ψ ψ ψ

  − = − − = −    

� �

�  

..... (12) 

Inserting equation (12) into equation (11), we get 

 
* *1ˆ ˆ( , )  ( , ) ( , )  ( , ) 

x

x x

d x Pi i
x t P x t dx x t P x t dx

dt m m m
ψ ψ ψ ψ

+∞ +∞

−∞ −∞

  
= − = =  

  
∫ ∫

�

�
 

or, x

d x
m P

dt
= ..... (13) 

The above equation represents quantum mechanical equivalent of the classical mechanical 

description of linear momentum ( vm P= ). In general, if an operator Â  does not have explicit 

time-dependence, the time evolution of its expectation value can be described by 

( )* ˆ ˆˆ ˆ   
d A i

HA AH dx
dt

ψ ψ
+∞

−∞

 
= − 

 
∫

�
 

or, ( )* ˆ ˆˆ ˆ   
d A

i HA AH dx
dt

ψ ψ
+∞

−∞

= −∫�  
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Ehrenfest Theorem: 

 Ehrenfest theorem provides a relationship between the expectation values x
 
and P

, and the classical values x  and P , respectively. Thus this theorem shows the connection 

between quantum and classical dynamics. 

As we did before, we can write for expectation value of momentum, 

* ˆ( , )  ( , )
x x

P x t P x t dxψ ψ
+∞

−∞

= ∫  

or, 
* ˆ ˆ ˆ ˆ   

x
d P i

HP PH dx
dt

ψ ψ
+∞

−∞

 = − ∫
�

 ..... (14)  

Given 
2 2

2
ˆ ( )

2
H V x

m x

 ∂
= − + 

∂ 

�
 and ˆ

x

d
P i

dx

 
= −  

 
� , we can write, 

2 2

2

3 3

3

ˆ ˆ  ( )  ( , )
2

           
2

x

d
HP V x i x t

m x dx

i d d
i V

m dx dx

ψ ψ

ψ ψ

 ∂  
= − + −  

∂   

= − −

�
�

�
�

 

and 

2 2

2

3 3

3

ˆ ˆ  ( )  ( , )
2

           
2

x

d
P H i V x x t

dx m x

i d d dV
i V i

m dx dx dx

ψ ψ

ψ ψ
ψ

 ∂ 
= − − +   

∂   

= − −

�
�

�
� �

 

Thus, ˆ ˆ ˆ ˆ  
x x

dV
HP P H i

dx
ψ ψ − =  �  ..... (15) 

Inserting equation (15) into equation (14), we get 

* *      
x

d P i dV dV
i dx dx

dt dx dx
ψ ψ ψ ψ

+∞ +∞

−∞ −∞

= = −∫ ∫�
�

 

or, 
x

d P dV

dt dx
= −

 

..... (16)  
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This equation is called Ehrenfest theorem
5
 which is nothing but the quantum mechanical 

equivalent of classical mechanical Newton’s law:  F m f=  

 

Key Mathematical Representations of Quantum Mechanics: 

 The wavefunction and the operator are two key constituents of quantum mechanics. 

The wavefunction represents the state of a system and when the operator acts the 

wavefunction, we get the experimental observables. We have already understood that all well-

behaved wavefunctions must be square normalizable.  
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Exercise: 
 

(1) The time-independent wavefunction ( )xψ  can be always taken to be real. Even if ( ),x tψ  is 

complex, one can express ( ) ( )*( )x x xφ ψ ψ= +  to obtain a real solution where ( )xψ  and 

( )*
xψ both satisfy TISE. Prove this argument. 

(2) Prove that if ( ),x tψ  is  a solution to the TDSE, ( ),A x tψ  is also a solution to the TDSE. 

 

Important Note: ( ),x tψ  is necessarily complex due to the presence of the phase factor; 

however, ( )xψ  and E  are always real.  

 

(2) Determine whether following wavefunctions at 0t =  are physically acceptable solution to 

the TDSE: 

(a) 
1

( ,0) sin ( )x xψ −=  over the interval ( 1, 1)− + , (b) ( ,0)
x

x Aeψ −
=  over the interval ( , )−∞ +∞ . 

 

 

References and Notes: 

1. Quantum mechanical postulates are statements that are assumed to be true and to be starting point 

for further reasoning and arguments. The ultimate test of the fidelity of the postulates must be obtained 

by comparing the results predicted by quantum mechanics with experimental data. 

2. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, Volume One, Chapter III: The 

Postulates of Quantum Mechanics, English Translation, Hermann and John Willey and Sons, 1977. 

3. In Mathematics language, this is called initial value problem (an ordinary differential equation with an 

initial condition). 

4. Refer to any standard quantum chemistry text book for hydrogen atom problem.   

5.  

 

3(2):   
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Chapter 3A: Answers 

 

Answers 

Ans: Using variable separation method, we have obtained following form of the wavefunction: 

( ) ( )
 

,   
iEt

x t A x eψ ψ
−

= �

 
..... (a)

,
 

Where, A  is normalization constant. If E  is a complex quantity, one can express this as a 

general form of a complex number:  ( )0E iε ε= + . Then one can rewrite equation (1) as, 

( ) ( ) ( )
0 0( )

   

,     
i i t i t t

x t A x e A x e e

ε ε ε ε

ψ ψ ψ
+

− − +

= =� � �

 
..... (b) 

We have seen that ( ),x tψ  remains normalized at all time. Mathematically, it is expressed as 

2
( , ) 0

d
x t dx

dt
ψ

+∞

−∞

 
= 

 
∫ . This mandates one fact that the integral 

2
( , )x t dxψ

+∞

−∞

∫  must be always 

independent of time. However,   

  

 

 

 

 

 

 

 

 

 

 

 



40 

 

TDQC: ABh+ERB (IISc+CSU) 2021 

 


